Anatomical Profile of Vertebrobasilar System Based on Angiographic Studies
Abstract
Highlight:
- Anatomical variations in blood vessels can significantly affect circulatory hemodynamics
- These variants also pose a risk of developing intracranial pathologies such as aneurysms
- Early detection can help prevent further complications
ABSTRACT
Introduction: Variations of cerebral vasculature in vertebrobasilar system (VBS) occur during embryogenesis and may contribute to cerebrovascular events. These anatomical variants occur in approximately 7% of cases with a 91% prevalence noted in the symmetrical caudal fusion variant. Cerebral angiography remains the most sensitive method for diagnosing these anomalies. Objective: This study aimed to identify angiographic variations in the VBS. Method: This descriptive observational study used a cross-sectional approach, analyzing secondary data from stroke patients who underwent angiographic procedures between December 2017 and August 2020 at Prof. dr. R. D. Kandou Hospital, Manado. The sample size included the total population of stroke patients who met the inclusion criteria. Data were processed using SPSS version 32. Result: A total of 277 samples were analyzed. The most commonly observed variations were symmetric cranial fusion (81.50%) and asymmetric caudal fusion (15.42%). One case of symmetric caudal fusion had a basilar tip aneurysm. While most patients exhibited normal anatomy, variants of the posterior cerebral artery (PCA) were also observed, including absence (6.17%) and hypoplasia (7.48%). The superior cerebellar artery (SCA) was absent in 1.76% of cases. Absence of the anterior inferior cerebellar artery (AICA) and posterior inferior cerebellar artery (PICA) was observed in 13.56% of cases; however, these were compensated by complex vascular formations involving collateral sources (21.58%). Conclusion: This study concludes that anatomical variations in cerebral vasculature, including perforators and anastomoses, can be effectively observed through angiographic studies.Careful patient selection is essential to rule out secondary causes of hemifacial spasm and to identify underlying neurovascular contacts.
Full text article
References
1. Agarwal N, Carare RO. Cerebral vessels: an overview of anatomy, physiology, and role in the drainage of fluids and solutes. Front Neurol. 2021;11:611485. DOI: 10.3389/fneur.2020.611485
2. Srichawla BS, Garcia-Dominguez MA. Regional dynamic cerebral autoregulation across anterior and posterior circulatory territories: a detailed exploration and its clinical implications. World J Crit Care Med. 2024;13(4):1-10. DOI: 10.5492/wjccm.v13.i4.97149
3. Govindarajan M, Vijayeswaran N. Anatomical variations and its clinical significance in vertebrobasilar system - a cadaveric study in the Indian population. Int J of Adv Res. 2018;6:319–24. DOI: 10.21474/IJAR01/7678
4. Ballout AA, Libman RB, Schneider JR, Black K, Sideras P, Wang JJ, et al. Vertebrobasilar stroke: association between infarction patterns and quantitative magnetic resonance angiography flow state. J Am Heart Assoc. 2022;11:e023991. DOI: 10.1161/JAHA.121.023991
5. Sudharmadji S, Leslie GM, Herryanto D. Analysis of the relationship between symptoms, clinical diagnosis, and findings of CT-scan images to pictures of vertebrobasilar artery insufficiency. Asian J Health Sci. 2024;3(10):265–77. DOI: 10.58631/ajhs.v3i10.127
6. Bonasia S, Di Caterino F, Robert T. Embroyology of the vertebral artery and variants of the adult. Neurochirurgie. 2024;70(3):101517. DOI: 10.1016/j.neuchi.2023.101517
7. Matsukawa H, Kamiyama H, Noda K, Ota N, Takahashi O, Shonai T, et al. Embryological basilar apex disposition as a risk factor of basilar apex aneurysm. J Clin Neurosci. 2018;58:79–82. https://doi.org/10.1016/j.jocn.2018.10.004
8. Djulejić V, Marinković S, Milić V, Georgievski B, Rašić M, Aksić M, et al. Common features of the cerebral perforating arteries and their clinical significance. Acta Neurochir. 2015;157:743–54. DOI: 10.1007/s00701-015-2378-8
9. Antunović V, Mirčić A, Marinković S, Brigante L, Mališ M, Georgievski B, et al. Clinical significance of the cerebral perforating arteries. PRILOZI. 2017;38(3):19–29. DOI: 10.2478/prilozi-2018-0003
10. Aburto-Murrieta Y, Marquez-Romero JM, Martínez-Arellano P, Serrano-Arias FE, Montenegro-Rosales HA, López-Mena D. Anatomical variations of the intracranial arteries and their association with intracranial aneurysms: insights from digital subtraction angiographies. Neuroradiol J. 2025. DOI: 10.1177/19714009251313516
11. Reyes-Soto G, Pérez-Cruz JC, Delgado-Reyes L, Castillo-Rangel C, Cacho Diaz B, Chmutin G, et al. The vertebrobasilar trunk and its anatomical ariants: a microsurgical anatomical study. Diagnostics: 2024;14(5):534. DOI: 10.3390/diagnostics14050534
12. Ota T. Functional arterial anatomy of the brain. Stroke Vasc Interv Neurol. 2022;2(5):e000446. DOI: 10.1161/SVIN.122.000446
13. Vogels V, Dammers R, Van Bilsen M, Volovici V. Deep cerebral perforators: anatomical distribution and clinical symptoms: an overview. Stroke. 2021;52(10):e660-74. DOI: 10.1161/STROKEAHA.120.034096
14. Park H, Son YJ, Hong N, Kim SB. The relationship between non-aneurysmal spontaneous subarachnoid hemorrhage and basilar tip anatomy. J Cerebrovasc Endovasc Neurosurg. 2022;24(3):232–40. DOI: 10.7461/jcen.2022.E2022.01.004
15. Błaszczyk M, Ochwat K, Necka S, Kwiecińska M, Ostrowski P, Bonczar M, et al. The arterial anatomy of the cerebellum—a comprehensive Review. Brain Sci. 2024;14(8):763. DOI: 10.3390/brainsci14080763
16. Hou K, Xu K, Yu J. Endovascular treatment of anterior inferior cerebellar artery trunk aneurysms. Interv Neuroradiol. 2022;28(5):604–12. DOI: 10.1177/15910199211049054
17. Bakalarz M, Rożniecki JJ, Stasiołek M. Clinical characteristics of patients with vertebral artery hypoplasia. Int J Environ Res Public Health. 2022;19(15):9317. DOI: S10.3390/ijerph19159317
18. Göktürk N, Kara T, Tural İÇ, Yüksel M, Yurttutan N. Vertebrobasilar system variations; analysis with multi-detector CT angiography. Med Sci Discov. 2024;11(7):199–204. DOI: 10.36472/msd.v11i7.1159
19. Dinç Y, Özpar R, Emir B, Hakyemez B, Bakar M. Vertebral artery hypoplasia as an independent risk factor of posterior circulation atherosclerosis and ischemic stroke. Medicine. 2021;100(38):e27377. DOI: 10.1097/MD.0000000000027280
20. Hsu CF, Chen KW, Su CH, Shen CY, Chi HY. Bilateral vertebral artery hypoplasia and fetal-type variants of the posterior cerebral artery in acute ischemic stroke. Front Neurol. 2021;12:582149. DOI: 10.3389/fneur.2021.582149
21. Dong J, Mei Y, Bai X, Tong X, Dmytriw AA, Yang B, et al. Hemodynamic differences between basilar artery fenestration and normal vertebrobasilar artery: a pilot study. Front Neurol. 2022;12:766174. DOI: 10.3389/fneur.2021.766174
22. Omotoso BR, Harrichandparsad R, Moodley IG, Satyapal KS, Lazarus L. Fenestration of the vertebrobasilar junction detected with multidetector computed tomography angiography. Folia Morphol. 2022;81(2):510–4. DOI: 10.5603/FM.a2021.0028
23. Zhu DY, Fang YB, Wu YN, Li Q, Duan GL, Liu JM, et al. Treatment of fenestrated vertebrobasilar junction-related aneurysms with endovascular techniques. j Clin Neurosci. 2016;28:112–6. DOI: 10.1016/j.jocn.2015.09.018
24. Kritikos M, Sharma N, Sedora-Roman N, Choudhri O, Pukenas B, Hurst R, et al. Duplication of the vertebral artery: A series of four cases. Interv Neuroradiol. 2018;24(6):596–600. DOI: 10.1177/1591019918783973
Authors
Copyright (c) 2025 Gilbert Tangkudung, Finny Warouw, Kennytha Yoesdyanto, Vinson Hartoyo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.