Deferring Angioplasty and Stenting based on Natural Progression in Severe Middle Cerebral Artery Stenosis An Observation of Two Cases
Abstract
Highlight:
- MCA stenois may remodel spontaneously or progress to complete occlusion
- Serial imaging observing progression spots high-risk cases, guiding intervention
ABSTRACT
Introduction: Severe middle cerebral artery (MCA) stenosis, as one of the intracranial atherosclerotic diseases, is a major cause of ischemic stroke. The role and optimal timing of interventions, such as angioplasty and stenting, remain subjects of debate, particularly due to the variable natural disease progression. While some cases improve spontaneously, others progress to total occlusion, necessitating comprehensive evaluation of individualized treatment approaches. Cases: This case series presents two patients with severe MCA stenosis, each of whom followed a distinct clinical courses. The first patient had 88% stenosis in the M1 segment of the right MCA (NIHSS 3, mRS 2), which spontaneously improved to 57% within days (NIHSS 2, mRS 2), with enhanced distal flow, leading to the decision to defer angioplasty and stenting. In contrast, the second patient initially had severe left MCA stenosis (NIHSS 10, mRS 4), which progressed to total occlusion within three months (NIHSS 10, mRS 4), also resulting in deferred intervention. Serial cerebral digital subtraction angiography (DSA) facilitated the observation of vascular evolution and collateral circulation, guiding decisions about intervention. Conclusion: The clinical outcomes of MCA stenosis range widely, from spontaneous resolution to progressive occlusion. Close serial imaging observation of collateral circulation and natural progression is essential for guiding decisions about angioplasty and stenting.
Full text article
References
1. Wegener S, Baron JC, Derdeyn CP, Fierstra J, Fromm A, Klijn CJ, van Niftrik CH, Schaafsma JD. Hemodynamic stroke: emerging concepts, risk estimation, and treatment. Stroke. 2024;55(7):1940-50. DOI: 10.1161/STROKEAHA.123.04438.
2. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344-418. DOI: 10.1161/STROKEAHA.119.027708
3. Deng Y, Yao Y, Tong X, Yin Y, Wang A, Zhang Y, et al. Necessity and timing of angioplasty in acute large-vessel occlusion strokes due to intracranial atherosclerotic disease: a cohort analysis with data from the angel-ACT registry. Front. Neurol. 2023;14:1087816. DOI: 10.3389/fneur.2023.1087816.
4. Chen LH, Spagnolo-Allende A, Yang D, Qiao Y, Gutierrez J. Epidemiology, pathophysiology, and imaging of atherosclerotic intracranial disease. Stroke. 2024;55(2):311-23. DOI: 10.1161/STROKEAHA.123.043630.
5. Flusty B, de Havenon A, Prabhakaran S, Liebeskind DS, Yaghi S. Intracranial atherosclerosis treatment: past, present, and future. Stroke. 2020;51(3):e49-53. DOI: 10.1161/STROKEAHA.119.028528.
6. Liu L, Ding J, Leng X, Pu Y, Huang LA, Xu A, et al. Guidelines for evaluation and management of cerebral collateral circulation in ischaemic stroke 2017. Stroke Vasc Neurol. 2018;3(3). DOI: 10.1136/svn-2017-000135.
7. Mao Y, Huang Y, Zhang L, Nan G. Spontaneous recanalization of atherosclerotic middle cerebral artery occlusion: case report. Medicine. 2017;96(27):e7372. DOI: 10.1097/MD.0000000000007372.
8. Gusev E, Sarapultsev A. Atherosclerosis and inflammation: Insights from the theory of general pathological processes. Int J Mol Sci. 2023 Apr 26;24(9):7910. DOI: 10.3390/ijms24097910.
9. Yao W, Chen H, Huang K, Peng W, Zhang X, Yang D, et al. Atherosclerotic plaque evolution predicts cerebral ischemic events in patients with intracranial atherosclerosis: a multicentre longitudinal study using high-resolution MRI. Eur Radiol. 2024:1. DOI: 10.1007/s00330-024-11248-8.
10. Singh AA, Kharwar A, Dandekar MP. A review on preclinical models of ischemic stroke: insights into the pathomechanisms and new treatment strategies. Curr Neuropharmacol. 2022;20(9):1667-86. DOI: 10.2174/1570159X19666210907092928.
11. Hakim S, Joseph R, Haq M, Warrier A, Sani AF, Srijithesh P. Angiographic evidence of dynamics of atherosclerotic process involving cerebral vasculature: Involution and evolution in the same patient. Presented on: Poster Presentation; 2025; Bengaluru, India. Available at: https://abcwin2025.europa-inviteo.com/programme/index.php?langue=en&onglet=0&idUser=&emailUser=&printable=1¶mFrame=1¶mSessionProgramme=¶mCode=¶mCallback=https%3A%2F%2Fwww.abcwin-seminar.com%2Fprogramme-2025.
12. de Havenon A, Turan TN. Past, present, and future of intracranial atherosclerosis treatment. Stroke. 2024;55(2):471-3. DOI: 10.1161/STROKEAHA.123.044270.
13. Song JY, Kwon SU. Intracranial atherosclerotic stenosis. Cerebrovasc Dis Extra. 2025;15(1):62-7. DOI: 10.1159/000543356.
Authors
Copyright (c) 2025 Vita Kusuma Rahmawati, Achmad Firdaus Sani, Dedy Kurniawan, Muh. Wildan Yahya, Faishol Hamdani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.